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STABILITY OF A COMPRESSED ELASTIC LAYER WEAKENED BY A CIRCULAR CRACK™

L.M. FILIPPOVA

A layer of non-linearly elastic incompressible material with a circular
crack located at the middle of the layer parallel to its boundaries is
considered. The layer is compressed by forces acting along the boundaries.
Those values of the compression strain are sought for which buckling of
the layer material occurs near the crack, i.e., opening of the crack
occurs because of the elastic instability. The stability problem is
reduced to a homogeneous Fredholm integral equation of the second kind
with a continuous kernel dependent on the initial deformation parameter.
Critical values of the compression are determined numerically as a func-—
tion of the ratio between the layer thickness and the crack radius.

1. We assume that an elastic layer of incompressible isotropic material has a symmetric-
ally located circular crack (slot) of radius @, in the undeformed state and experiences a
finite strain due to a uniform axisymmetric load applied at infinity and acting in the plane
of the crack. Since the crack is considered to be infinitely thin, its presence under such
a loading is not felt and a homogeneous strain and a homogeneous stress field with the follow-
ing components in cylindrical coordinates is realized in the layer:

Opp = Ogg = AOIN/GA, — A7%011/0M4 (1.1)
Opp = Opp == Oy, = O, = 0.

Here M (k =1, 2,3) are the principal elongations {multiplicity of the elongation) II (,,
A3, Ag) is a function of the specific strain potential energy of the incompressible material
/1/, % is the multiplicity of the elongation in the radial direction (for compression 0 <
A < 1). Dencting the layer thickness in the undeformed configuration by 25k, and a =g,
the crack radius in the initial deformed state, we find from the incompressibility condition
that the thickness of the deformed layer will equal 2ah, where h = A %,.

A small deformation caused by loading the crack surface by an axisymmetrically distributed
pressure p (r) is superimposed on the finite deformation described.

We use the linearized equilibrium equations of a prestressed incompressible body under
the axisymmetrical additional deformation /2/

3*u i du u [ i ag _
b (G + o — ) v (e + ) =0 (1.2)
9%u w v du ®  dw dq
Ve trgm t T m e =0
on u Jw =0
Br r 8
po= 2ARI,; + AT, + AT, — 247105,
_ HOy— 280 Mg — ML
V=g *T T
Il %11
Iy = Ty Ty, = Mor,

Here r, z are dimensicnless cylindrical coordinates (referred to the crack radius a in
the initial deformed state), u, W are the radial and vertical components of the field of
additional displacements, and g is the additional normal stress acting in horizontal sections
of the layer.

The conditions expressing no load on the layer boundaries .z = -k have the form

duldz + dwlor = 0, ¢"= 0. (1.3)

By virtue of 'the symmetry of the problem relative to the middle plane of the layer, it
is sufficient to examine half the layer 0 <{z<(% by setting the following mixed conditions
at z=10
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/dz + owldr = 0, 0 L r<C oo

(1.4)
g=-—p) 0Cr<t;, w=0, 1 r< 0. (.5)
Applying the Hankel integral transform, we construct the solution of Egs.(1.2)
u{r,z)= S (Ay0y8, + A3016; + B10y8, + Bywgt,) J4 (ar) du (1.6)
0

w(r,z)= S(A‘c1 4 Ay8; -+ By + Bysy) Sy (o) da
¢

g )= {1081 (451 + As6)) + 048 (B3, + Bacy)l o], (ar) dex
i)

Ay = Ay (@), By = By (a), ¢y = chaw (b — 2),

s =shaw, (h—2), k=1,2; A, =v —p + vo?2

Ay = v — p— Vot

Here J, and J; are Bessel functions @;, @, are roots of the equation vei— (p — 2vje? +

% = 0, having a positive real part. Such roots exist if the elastic material satisfies the
strict Hadamard inequality /2/.

Satisfying the boundary conditions (1.3) and (l1.4), we obtain

1 0y WA
Blz" 1,[_03:: Al’ Bﬁz“ L\)gA; A2 (1'7)
A, — {1 -+ %) wgdy (ch auoph — chawh} 4,
2 =

(1 4~ 9®) {©283 sh A1k — 141 Sh qwah).

The boundary conditions (1.5) result in dual integral equations in the function 4, (@)
in terms of which the solution of the problem is expressed according to (1.6) and (1.7). This

equation has quite an awkward form for a material of a general kind and it is not worth
writing it down.

2. We will henceforth confine ourselves to the case of a neo-Hookean material /1/, for
which the following expressions hold (G is the shear modulus)

M= 4G (h?+Ag? +h?—3), ve=Gr™ @.1)
B=G A+ 3%, x =G\ o, =1, 0, = A3

After some manipulation and the introduction of a new unkown function A (&)

the dual
integral equation for this material takes the form
§A@) Ty (@r)du=0, r>1 2.2)
0
\4@1c0)—g(@Mad, (@) da=— 5L, r<t
[
c(y = LAEME =4

[14]
T 8N =C0)— e
@, = 4A%h o hech ahy — (1 4+ A%)%ch aA 3hesh ak,
®, = 8A* (1 + A%)%(ch aA~%hych ahy — 1) —
[16A8 + (4 — A%)")sh A 3hysh ahg -

The radial component of the displacements in the layer is expressed in terms of

the
function 4 (&) as follows
u= S [49 (M shar® (b — 2) + M, chad® (h— z) +
J «
234 .
g (Nacha(h—2) + Nysha(h— z))} Jylor) o

- an — (A2
M=—q—ma Ve Me=—(gmg M

Ny = 433 (chak ~— chad®h)A®,ashah
Ny = ADH(1 + A%)shal®h — 4A%h ahlashah .
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Following the method described in /3/, we reduce the dual Eq.(2.2) to a Fredholm equation.
We seek the unknown function in the form

1
Alg)= —;—— S o (t)(cosat — cose)dt . 2.3
9

The first relationship (for r>1) of the dual Eg.{(2.2) is here satisfied identically
for all continuously differentiable functions ¢ () /3/.
Taking account of the known representations /4/

#®
Iy (ar)’=—§- fcos{arsinﬂ)d&
0

SJo(ar)cosoctda={ o r<lt
0, P2, r >t

and substituting (2.3) into the second relationship of the dual Eg. (2.2}, and then setting
1

F@=Che@)— 4 {o@KE+an+KE—n0)— 2.4)
K('l-}—x,?u)—K(l-—u:r,h)]dt 0L
K(x, A) = Sg(a, A) cos ax da
]

we arrive at a Schlecemilch integral egquation

Eits
S F(rsin®)db=— 2 p(r)

[}

whose solution is known /3/

2
F@y=—z [pO+c | psin0)as]. @.5)

e

Substituting (2.5} into (2.4), we arrive at a Fredholm integral equation of the second
kind in the function ¢ (). The problem of a crack in a prestressed layer can be reduced in an
analogous manner based on (1.6) and (1.7) to a Fredholm equation even for other materials
from the class of isotropic incompressible bodies.

3. Let us investigate the properties of the function K {z,4). It can be shown that the
function @, {a, A} has no real zeros except the point a =0 for values &, <A< ' where
Ao = v = 0.667.

The set of real roots of the equation @, ¢, M =0 ocbviously consists of the root a=20
and real roots of the equation

thaky/thad 3hy = 433 (1 + A% . (3.1)
We rewrite {(3.1) as follows
thyy 4y
YN =i, Y=g, W =greEr (3.2)

Y =A>0, y = akth,
It can be established that for all 0y <o

1<%

V<Y forvy>1 (3.3)
TSeW Y

<
Klfory<xt

The function f(y}—1 has two zeros: 1 and 1vy,~=0.29. Hence and from the expression for
the derivative of this function it follows that f(W>1 for gy, <y<!{ and f@{ <t for v<7ve
and 1< y<w. Taking (3.3) into account this means that (3.2) and, therefore, also (3.1) have
no real roots for Ve <y oo,

Since thepoint « =0 isnot apole of the function g(a, A)’ this function has no poles on the
real axis for Ay <A< 0. Moreover, it canbe established that the function g(a, A) decreases
exponentially as & — do. Therefore K (z, A} is a continuous functionof z for I <A < 00,

Note that the quantity X, is the critical value of the multiplicity of the elongation
for an unbounded space with a crack. For A =k, instability of the unbounded body sets in
(i.e., the layer of infinite thickness) weakened by a circular crack /2/.

Therefore, the problem of a crack under consideration is reduced to a Fredholm integral
equation of the second kind with a continuous kernel. When there is no load on the crack
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surface (p(r) =0), we arrive at a problem of determining the values of the parameter A for
which non-trivial solutions exist for the homogeneous Eq. ((2.4) for F (z) = 0). The minimum
value of the parameter & =1 — A, for which this equation has a non-zeroc solution is the
critical deformation for which axisymmetric and symmetric buckling of the layer material
relative to the 2z =20 plane occurs near the crack, i.e., opening of the crack occurs because
of elastic instability. Below we give values of the critical deformation & found by anumerical
solution of the equations menticned for a number of values of the relative half-thickness of
the layer h,

hy 0.1 0.3 0.5 0.7 1
e-10% 7.22 50.9 111 168 228 «

The author is grateful to V.A. Eremeyev and M.I. Karyakin for assistance in performing
the numerical calculations.
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GRAVITATIONAL ACCELERATION IN MINKOWSKI SPACE”

L.I. SEDOV

The connections between models of the physical phenomenon of gravitation and geometrical
models of space and time have been described previously /1-4/. As a result, an analysis was
obtained of the macroscopic nature of gravitational interactions in the framework of four-
dimensional pseudo-Riemannian spaces and three-dimensional Euclidean spaces in which there is
Newtonian universal absolute time.

The corresponding theory is developed below for families K consisting of world lines
associated with the free motion of individualized points that correspond to particles with a
constant rest mass.

In the generalized coordinate system &, &, 8, £ we find for individual points of the
family X that E* = const(z=1,2,3) and & is the time coordinate, changing along the world
lines of K.

Generally speaking, for any family of associated world lines K, not necessarily for free
motions of material particles in a pseudo-Riemannian space, we can introduce an associated
canonical c¢oordinate system &, 8% §%, T where the metric has the following form at every point:

dst = edT® 4 2g,,dE*T + goadt%dEP (o, B = 1,2,3)
where the coordinate T coincides with the proper global time on the world lines of X, and
the components of the acceleration on the world lines are given by the formulae

ua o 9
Boy = Bgr g = gy =085, (%, 1)/0T

where u, is the covariant component of the four-dimensional velocity vector u, directed along
the tangent at each peoint of the corresponding world line X, and the contravariant components
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