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STABILITY OF A COMPRESSED ELASTIC LAYER WEAKENED BY A CIRCU~R CRACK* 

L.M. FILIPPOVA 

A layer of non-linearly elastic incompressible material with a circular 
crack located at the middle of the layer parallel to its boundaries is 
considered. The layer is compressed by forces acting along the boundaries. 
Those values of the compression strain are sought for which buckling of 
the layer material occurs near the crack, i.e., opening of the crack 
occurs because of the elastic instability. The stability problem is 
reduced to a homogeneous Fredholm integral equation of the second kind 
with a continuous kernel dependent on the initial deformation parameter. 
Critical values of the compression are determined numerically as a func- 
tion of the ratio between the layer thickness and the crack radius. 

1. We assume that an elastic layer of incompressible isotropic material has a symmetric- 
ally located circular crack (slot) of radius a, in the undeformed state and experiences a 
finite strain due to a uniform axisymmetric load applied at infinity and acting in the plane 
of the crack. Since the crack is considered to be infinitely thin, its presence under such 
a loading is not felt and a homogeneous strain and a homogeneous stress field with the follow- 
ing components in cylindrical coordinates is realized in the layer: 

str = avp, = hantah, - h-*am%, 
u,, = are = ulpr = a,, = 0. 

(14 

Here h, (k = 1,2,3) are the principal elongations (multiplicity of the elongation) n(h,, 

h,, A,) is a function of the specific strain potential energy of the incompressible material 

/l/, h is the multiplicity of the elongation in the radial direction (for compression 0< 
h< I). Denoting the layer thickness in the undeformed configuration by 2u,,ho and a =?.a, 
the crack radius in the initial deformed state, we find from the incompressibility condition 
that the thickness of the deformed layer will equal 2ah, where h = he3h,. 

A small deformation caused by loading the crack surface by an axisymmetricallydistributeci 
pressure p(r) is superimposed on the finite deformation described. 

We use the linearized equilibrium equations of a prestressed incompressible body under 
the axisymmetrical additional deformation /2/ 

Here r, z are dimensionless cylindrical coordinates (referred to the crack radius a in 
the initial deformed state), u, w are the radial and vertical components of the field of 
additional displacements, and q is the additional normal stress acting in horizontal sections 
of the layer. 

The conditions expressing no load on the layer boundaries ,z = +h have the form 

ada + adar = 0, 4’ = 0. (1.3) 

By virtue of'the symmetry of the problem relative to the middle plane of the layer, it 
is sufficient to examine half the layer O<e<h by setting the following mixed conditions 
at x=0 
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&_d& + awldr = 0, 0 < r < 00 

9 = -9 (& 0 -< r<l; w=O, l<r<ca. 

Applying the Hankel integral transform, we construct the solution of Eqs.11.2) 

n(r,z)= S(A Plsl + &VI + Rm,s, -t- R,m,c,)J,(ar)da 
" 
m 

m(r, z)= S(&, + A,% + 4~~ + B&JJ,(ar)da 

q(r, a,=1 fm,A,(&, -I &,) +m,A,(&s, I- B~c*)l~~~(~~)~ 

AK = A&z), BI, = B1, (a), ck = ch awk (h - z), 
sR = sh cmp (h - z), k = 1, 2; A1 = Y - p + vq*, 
AL\,=v-p-vyo22. 

(1.4) 

(i. 5) 

(1.6) 

Bere J, and J, are Bessel functions mIrm2 are roots of the equation va4- (p- zvb’+ 

x ~0, having a positive real part. Such roots exist if the elastic material satisfies the 
strict Hadamard inequality /2/. 

Satisfying the boundary conditions (1.3) and (1.4), we obtain 

B,=- +$$A,, B,==-$$A, 

(1 -+ oxa} co&* (eh aoph - ch c&Q AI 
A, = (l~op*)f~~Aqsh~k--Atsh~hf. 

(1.7) 

The boundary conditions (1.5) result in dual integral equations in the function A, (a) 
in terms of which the solution of the problem is expressed according to (1.6) and (1.7). This 
equation has quite an awkward form fox a material of a general kind and it is not worth 
writing it down. 

2. We will henceforth confine ourselves to the case of a neo-Hookean material /l/, for 
which the following expressions hold (G is the shear modulus) 

l-I= -+G(hIa -/- h,? + h3" - 3), v= Gh-a (2.1) 

p = G (he + 3h-9, x = Gh2, w1 r= 1, oz = h3 . 

After some manipulation and the introduction of a new unkown function A (CL) the dual 
integral equation for this material takes the form 

~A(a)Jo(ar)da==O, r> 1 
0 

m 

!I @P w ~Afa.)[Cfh!-gg(a,h)lzf,(arf~=--, r<l 
0 

C(h)= 
(1 -j- he)n--GP 

I--?.$ ’ g(%~)=C(&l- (*_:)*, 
CD, = 4h3sh aI.%,ch ah, - (1 -I- V)%h ak%,sh ah, 

CD, = 8h3 (1 + h’)*(ch ah-%,,ch ahi, - 1) - 
[16P + (1 - h”)%h aI2hg.h ah;. 

(2.2) 

The radial component of the displacements in the layer is expressed in terms of the 
function A (u) as follows 

u= (ID ~.S(M,shcrhS(h-z)+M,chtLh*(h--)+ 
SC 0 

~(n;,chh(h--)+N,sha(h--))]I,(ar)~ (i- F)a 

Ml= - {, __p)a 

4h* N 
z* M,=- y;q," N, 

N, = 4X3 (chah - chah%)AcD,-‘ashah 

N, = A@,,-‘[(I + h”)*shah% - 4h3sh ah]ashah . 
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Following the method described in /3/, we reduce the dual Eq.(2.2) to a Fredholm equation. 
We seek the unknown function in the form 

A~at=~~rp(i)fcosat-cona)dt. (2.3) 
0 

The first relationship (for r>i) of the dual Eq.lZ.2) is here satisfied identically 
for all continuously differentiable functions q(t) /3/. 

Taking account of the known representations /4/ 

&@.+$x f cos(arsin6) dfl 
0 

ca 

s 
Jo (ar) cos at da = 0, r<t 

0. 
(P - P)+, r>t 

and substituting (2.3) into the second relationship of the dual Eq.(2.2), and then setting 

P(.z)=C(h)rp(zj-_~Q(l)IK(t+r,h)tg(t--s.h)- (2.4) 

K(1+~+K(&h)]dt (O,<s<i) 

K(5,h)=~g(a,A)cososdsc 
0 

we arrive at a Schloemilch integral equation 

x/z s F(rsin6)dB=-.&p(r) 0 

whose solution is known /3/ 

F(x)=-5 [p(O)+sTp'(ssiriB)da1 
0 

(2.5) 

Substituting (2.5) into (2.41, we arrive at a Fredholm integral equation of the second 
kind in the function p(x). The psoblem of a crack in a prestressed layer can be reduced in an 
analogous manner based on (1.6) and (1.7) to a Fredholm equation even for other materials 
from the class of isotropic incompressible bodies. 

3. Let us investigate the properties of the function K(x,h). It can be shown that the 
function ';D, (a? A) has no real zeros except the point a = 0 for values h,<h< CQ' where 
h, = Yp z 0.667. 

The set of real roots of the equation uJD,~,h) = 0 obviously consists of the root a=0 
and real rootsof the equation 

thc&/thaX-%, = 4P(i + h'P . (3.1) 
We rewrite (3.1) as follows 

%h?/Y 
*,(P,Y)=ffY), *kJ,Y)=~ 

4Y 
f(Y) = (, + y*," (3.9) 

Y = Aa> 0, y = ah-8h, 

It can be established that for all O<y<m 

1GJ,(Y,Y)<YforYZ1 
Y~~(~,Y)<1forY~l 

(3.3) 

The function f&f-i has two zeros: 1 and Y.zO.296. Hence and from the expression for 
the derivative of this function it follows that f(Y)>1 for Y*<Y<i and r(y)<1 for Y<Y* 
and 1<Y<oo. Taking (3.3) into account this means that (3.2) and, therefore, also (3.1) have 
no real roots for Y+<Y<~. 

Sincethepoint a==0 isnotapoleofthe function 

&<.h<cQ. 
g(a,h)’ this functionhasnopolesonthe 

realaxis for Moreover, itcanbeestablishedthatthe function g(a,h) decreases 
exponentiallyas a + CO. Therefore K(z,h) isacontinuous functionof 5 for h,<h<,w. 

Note that the quantity h,is the critical value of the multiplicity of the elongation 
for an unbounded space with a crack. Fox h = h* instability of the unbounded body sets in 
(i.e., the layer of infinite thickness) weakened by a circular crack /2/. 

Therefore, the problem of a crack under consideration is reduced to a Fredholm integral 
equation of the second kind with a continuous kernel. When there is no load on the crack 
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surface (P W = 01, we arrive at a problem of determining the values of the parameter h for 
which non-trivial solutions exist for the homogeneous Eq.ct2.4) for F(z) = 0). The minimum 
value of the parameter F =I -?L, for which this equation has a non-zero solution iS the 
critical deformation for which axisymmetric and symmetric buckling of the layer material 
relative to the z=o plane occurs near the crack, i.e., opening of the crack occursbecause 
of elastic instability. Below we give values of the critical deformation E foundbyanumerical 
solution of the equations mentioned for a number of values of the relative half-thickness of 

the layer h, 

hn 0.1 0.3 0.5 0.7 1 
F..103 7.22 50.9 111 168 228 - 

The author is grateful to V.A. Eremeyev and M-1. Karyakin for assistance in performing 
the numerical calculations. 
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